Focusing light through dynamical samples using fast continuous wavefront optimization

The guys at LKB keep going inside turbid media. This time, they have done it really fast. By using a phase spatial light modulator and with the help of a FPGA card, they were able to focus light through a scattering medium at a rate of ~4 kHz.

This is trying to solve a common problem in biological systems when you use the Transmission Matrix approach: live systems evolve, and thus the matrix that you measure is not valid after a really short time.

For me, this is a really nice technical implementation (and not an easy one to do) merging electronics, computer science, and optics to tackle a well defined biological problem.

Focusing light through dynamical samples using fast continuous wavefront optimization,

B. Blochet et al, at Optics Letters

(featured image extracted from Fig. 1 of the manuscript)

Abstract:

We describe a fast continuous optimization wavefront shaping system able to focus light through dynamic scattering media. A micro-electro-mechanical system-based spatial light modulator, a fast photodetector, and field programmable gate array electronics are combined to implement a continuous optimization of a wavefront with a single-mode optimization rate of 4.1 kHz. The system performances are demonstrated by focusing light through colloidal solutions of TiO2 particles in glycerol with tunable temporal stability.

 

This work is licensed under CC BY-NC 4.0

Comentarios

Deja una respuesta

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *